An Easy Access to Stereodefined 2-Pentenyltins by Partial Hydrogenation of 2,4-Pentadienyltins with Diazene

Yutaka Nishigaichi,* Noriyuki Ishida, and Akio Takuwa Department of Chemistry, Faculty of Science, Shimane University, 1060 Nishikawatsu-cho, Matsue 690 (Received June 10, 1993)

Synopsis. Tributyl-(2-pentenyl)tins were readily prepared in high yield by hydrogenation of tributyl-(2,4-pentadienyl)tins with diazene generated from 2,4,6-triisopropyl-benzenesulfonohydrazide. The terminal double bond was selectively hydrogenated in the conjugated diene system. The stereochemistry of the internal double bond was completely retained.

Since it has become well-established that allylic tin compounds are of great synthetic importance, 1) various preparative methods of these compounds are known; however, there are few for the facile preparation of stereodefined ones, 2-5) in spite of their potential importance. In the thermal reaction with aldehydes, (E)- and (Z)-allylic tins preferentially gave anti- and syn-products, respectively. 6) In the photoreaction with benzil⁷⁾ and aldehydes,⁸⁾ (E)- and (Z)-allylic groups were introduced regio-reversely at the α -position of allylic tins, while retaining their stereochemistry. Under these circumstances, while 2-butenyltin (crotyltin) is particularly famous, especially due to its stereoselective reaction, 6) homologous 2-pentenyltins, which should also be useful reagents for organic synthesis (e.g. Eq. 1), have not yet been well mentioned.⁹⁾

In this paper, we wish to report that stereodefined tributyl-(2-pentenyl)tins can be readily synthesized by a partial hydrogenation of the corresponding tributyl-(2,4-pentadienyl)tins (PDT) with the use of diazene, while retaining their internal double-bond geometry.

Results and Discussion

Because the facile stereoselective preparation of PDTs has already been reported, $^{10)}$ they can be good precursors for the stereodefined synthesis of 2-pentenyltins. Knowing that diazene can hydrogenate less congested olefins selectively, $^{11,12)}$ we first applied p-toluenesulfonohydrazide as a source of diazene for the considered reaction (Eq. 2. $R=p\text{-MeC}_6H_4$). However, the reaction conditions necessary to generate diazene (reflux in ethanol) were found to be unsuitable, since the yield of pentenyltin 2a from PDT 1a was disappointing (26%) with a considerable contamination of the rearranged product 3^{14} (13%) (Eq. 3).

Thus, we next attempted the reaction in an aprotic solvent and at a lower temperature, finding that 2,4,6-triisopropylbenzenesulfonohydrazide $(4)^{15}$ is suitable for the source of diazene.

The results are listed in Table 1. (Z)-PDT was successfully hydrogenated by Method A (1.7 mol of 4 and 2 mol of K_2CO_3 in ether at room temperature for 27 h). As for the 2-substituent, its bulkiness and functionality did not disturb the reaction. (E)-PDTs required slightly forced conditions, such as Method B (4 was increased to 3 mol) or Method C (temperature was raised at 35 °C), due to their lower reactivity. Even if a little (E)-PDT remained unreacted, it could be removed by the Diels-Alder reaction with maleic anhydride. (10) After this treatment, 80% of (E)-2e was recovered without any contamination of (E)-1e.

In every case listed, the terminal double bond of 1 was selectively hydrogenated to afford the corresponding pentenyltin 2 with high yield, irrespective of the double-bond geometry and the substituent at the 2- or 3-position of PDT. It is also worth mentioning that the stereochemistry of 2 completely agreed with that of the parent PDT 1, as shown in Table 1. Thus, (Z)-2 were obtained with complete stereoretention in spite of the tendency of (Z)-allylic tins to isomerize to the (E)-form. 3,14 No rearranged pentenyltin like 3 was contaminated, either. These facts indicate the mildness of the present reaction conditons. However, hydrogenation of tributyl-(2,4-dimethyl-2,4-pentadienyl)tin and tributyl-(2,4-hexadienyl)tin failed, even under forced conditons; the hydrogenation was very slow.

In conclusion, variously substituted and unsubstituted 2-pentenyltins have been prepared in a facile and stereodefined manner. Such pentenyltins can be widely utilized for synthetic and mechanistic studies.

Experimental

General. ¹H, ¹³C, and ¹¹⁹Sn NMR spectra were recorded on a JEOL GX-270 spectrometer. Tetramethylsilane (δ =0.00) for ¹H and chloroform-d (δ =77.03) for ¹³C were used as internal standards. An ¹¹⁹Sn NMR measurement was performed using a double-sample tube technique; a

Table 1	Hydrogenation	of PDT by	Diazene

PDT (E/Z)		Product (E/Z)		$\mathrm{Method}^{\mathrm{a})}$	$Yield/\%^{b)}$
SnBu₃ Me	1a (<1/99)	SnBu ₃	2a (<1/99)	A	86
SnBu₃ Pr-i	1b (<1/99)	SnBu ₃	2b (<1/99)	A	90
SnBu ₃	1c (<1/99)	SnBu ₃ Bu-t	2c (<1/99)	A	88
SnBu ₃ OMe	1d (<1/99)	SnBu ₃ OMe	2d (<1/99)	A	93
SnBu₃	(Z)-1e $(7/93)$	SnBu ₃	(Z)- 2e $(7/93)$	A	87
√ SnBu₃	(E)-1e $(85/15)$	√√SnBu ₃	(E)- 2e $(85/15)$	В	81 ^{c)}
SnBu ₃	1f (86/14)	SnBu ₃	2f (85/15)	B (C)	89 (88)

a) See text. b) Determined by $^1\mathrm{H}\,\mathrm{NMR}$ analysis. Yield in parentheses was obtained by Method C. c) (E)-1e (13%) remained.

sample compound in CCl₄ was in the outer tube and tetramethyltin in acetone- d_6 as an external standard (δ =0.00) was in the inner tube. The IR spectra were obtained with a Hitachi 260-50 spectrometer.

PDTs $\mathbf{1a} - \mathbf{c}^{10}$ (E/Z < 1/99), $\mathbf{1d}^{16}$ (E/Z < 1/99), (Z)- $\mathbf{1e}^{17,18}$ (E/Z = 7/93), and (E)- $\mathbf{1e}^{19,20}$ (E/Z = 85/15) were prepared while referring to the reported methods. PDT $\mathbf{1f}$ (E/Z = 86/14) was similarly prepared from 3-methyl-pentadienyl-lithium²¹) and tributyltin chloride in THF.

Preparation of 2-Pentenyltins. Method A. Hydrogenation of PDT 1b is representative. A mixture of PDT 1b (1.46 g, 3.6 mmol), anhydrous K₂CO₃ (1.00 g, 7.2 mmol), and 2,4,6-triisopropylbenzenesulfonohydrazide (4)¹⁵⁾ (1.86 g, 6.2 mmol) in anhydrous ether (30 cm³) was stirred for 27 h at room temperature under an atmosphere of dry nitrogen. After being added to a solution of 1 mol dm⁻³ NaOH in methanol (40 cm³), the mixture was stirred for 2 h. It was partitioned between hexane and water. The organic layer was separated, washed with saturated brine, dried (anhydrous Na₂SO₄), and concentrated under reduced pressure to leave pentenyltin 2b as a colorless oil. The yield was determined 90% by ¹H NMR using p-nitrobenzaldehyde as an internal standard.

Method B. A mixture of PDT (1 mol), anhydrous K_2CO_3 (3.5 mol), and 4 (3 mol) in ether was stirred for 27 h in a similar way to that mentioned above. The work-up procedure was the same as Method A.

Method C. A mixture of PDT (1 mol), anhydrous K_2CO_3 (2 mol), and 4 (1.7 mol) in ether was refluxed for 4 h. The work-up procedure was the same as Method A.

(Z)-Tributyl-(2-methyl-2-pentenyl)tin (2a): IR (neat) 2950, 2900, 2860, 2840, 1640, 1450, 1370, 1065, and 865 cm⁻¹; ¹H NMR (CDCl₃) $\delta = 0.84$ (6H, m,

CH2CH2CH2CH3), 0.89 (9H, t, J=7.2 Hz, (CH2)₃CH₃), 0.94 (3H, t, J=7.5 Hz, CH₃CH₂CH=), 1.30 (6H, sext, J=7.1 Hz, CH₂CH₂CH₂CH₃), 1.48 (6H, m, CH₂CH₂CH₂CH₃), 1.64 (3H, q, J=1.2 Hz, $J_{\rm Sn-H}=11.0$ Hz, =CCH₃), 1.69 (2H, s, $J_{\rm Sn-H}=61.0$ Hz, CH₂SnBu₃), 1.93 (2H, quint, J=7.3 Hz, CH₃CH₂CH=), and 4.81 (1H, t, J=6.7 Hz, CH₃CH₂CH=); 13 C NMR (CDCl₃) $\delta=9.7$ (3C, $J_{\rm Sn-C}=311.1$ and 297.4 Hz, CH₂CH₂CH₂CH₃), 13.7 (3C, (CH₂)₃CH₃), 14.5 (CH₃CH₂CH=), 15.3 ($J_{\rm Sn-C}=249.2$ and 238.0 Hz, CH₂SnBu₃), 21.6 (CH₃CH₂CH=), 26.0 (=CCH₃), 27.5 (3C, $J_{\rm Sn-C}=54.8$ Hz, CH₂CH₂CH₂CH₃), 29.2 (3C, $J_{\rm Sn-C}=19.6$ Hz, CH₂CH₂CH₃), 122.0 ($J_{\rm Sn-C}=42.1$ Hz, CH₃CH₂CH=), and 134.4 ($J_{\rm Sn-C}=45.0$ Hz, =CCH₂Sn); 119 Sn NMR (CCl₄) $\delta=-15.83$.

(Z)-Tributyl-(2-isopropyl-2-pentenyl)tin (2b): IR (neat) 2950, 2910, 2860, 2840, 1635, 1450, 1370, 1065, and 870 cm⁻¹; 1 H NMR (CDCl₃) δ = 0.83 (6H, m, C $_{\rm H2}$ CH₂CH₂CH₃), 0.89 (9H, t, J = 7.2 Hz, (CH₂)₃C $_{\rm H3}$), 0.95 (3H, t, J = 7.6 Hz, C $_{\rm H3}$ CH₂CH=), 1.00 (6H, d, J = 6.8 Hz, i-Pr-CH₃), 1.30 (6H, sext, J = 7.3 Hz, CH₂CH₂CH₂CH₃), 1.47 (6H, m, CH₂C $_{\rm H2}$ CH₂CH₃), 1.68 (2H, s, J_{Sn-H}=63.0 Hz, C $_{\rm H2}$ SnBu₃), 1.90 (2H, quint, J = 7.3 Hz, CH₃C $_{\rm H2}$ CH=), 2.02 (1H, quint, J = 6.8 Hz, i-Pr-C $_{\rm H}$), and 4.83 (1H, t, J = 6.3 Hz, CH₃CH₂C $_{\rm H2}$ =); 13 C NMR (CDCl₃) δ = 9.9 (3C, J_{Sn-C}=310.1 and 296.4 Hz), 13.1 (J_{Sn-C}=256.6 and 242.6 Hz), 13.7 (3C), 14.4, 21.5, 22.1 (2C), 27.5 (3C, J_{Sn-C}=53.8 Hz), 29.2 (3C, J_{Sn-C}=19.6 Hz), 35.9, 118.5 (J_{Sn-C}=40.1 Hz), and 144.4 (J_{Sn-C}=44.0 Hz); 119 Sn NMR (CCl₄) δ = -16.70.

(Z)-Tributyl-(2-t-butyl-2-pentenyl)tin (2c): IR (neat) 2970, 2940, 2880, 1635, 1470, 1380, 1360, 1070, and 870 cm⁻¹; ¹H NMR (CDCl₃) $\delta = 0.84$ (6H, m, C $\underline{\text{H}}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 0.89 (9H, t, J = 7.1 Hz, (CH₂)₃C $\underline{\text{H}}_3$), 0.97 (3H, t, J = 7.6 Hz, C $\underline{\text{H}}_3\text{CH}_2\text{CH}=$), 1.02 (9H, s, t-Bu),

- 1.30 (6H, sext, J=7.2 Hz, $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 1.47 (6H, m, $\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 1.67 (2H, s, CH_2SnBu_3), 1.82 (2H, quint, J=7.6 Hz, $\text{CH}_3\text{CH}_2\text{CH}=$), and 4.89 (1H, t, J=6.3 Hz, $\text{CH}_3\text{CH}_2\text{CH}=$); ^{13}C NMR (CDCl $_3$) $\delta=10.2$ (3C, $J_{\text{Sn-C}}=311.0$ and 297.4 Hz), 11.3 ($J_{\text{Sn-C}}=261.3$ and 251.0 Hz), 13.7 (3C), 14.3, 22.1 ($J_{\text{Sn-C}}=10.8$ Hz), 27.5 (3C, $J_{\text{Sn-C}}=55.8$ Hz), 29.2 (3C, $J_{\text{Sn-C}}=19.6$ Hz), 29.7 (3C), 36.2, 118.8 ($J_{\text{Sn-C}}=39.1$ Hz), and 146.5 ($J_{\text{Sn-C}}=46.0$ Hz); ^{119}Sn NMR (CCl $_4$) $\delta=-19.21$.
- (Z)-Tributyl- [2- (1- methoxyethyl)- 2- pentenyl]tin (2d): IR (neat) 2960, 2930, 2875, 2860, 2820, 1650, 1460, 1380, 1300, 1120, 1100, and 865 cm⁻¹; 1 H NMR (CDCl₃) δ =0.84 (6H, m, C $\underline{\text{H}}_2$ CH₂CH₂CH₃), 0.89 (9H, t, J=7.1 Hz, (CH₂)₃C $\underline{\text{H}}_3$), 0.98 (3H, t, J=7.6 Hz, C $\underline{\text{H}}_3$ CH₂CH=), 1.20 (3H, d, J=6.4 Hz, CH(OCH₃)C $\underline{\text{H}}_3$), 1.30 (6H, sext, J=7.1 Hz, CH₂CH₂C $\underline{\text{H}}_2$ CH₃), 1.48 (6H, m, CH₂C $\underline{\text{H}}_2$ CH₂CH₃), 1.61 (2H, AB, C $\underline{\text{H}}_2$ SnBu₃), 1.93 (2H, m, CH₃C $\underline{\text{H}}_2$ CH=), 3.19 (3H, s, OCH₃), 3.55 (1H, q, J=6.35 Hz, C $\underline{\text{H}}$ OCH₃), and 5.06 (1H, t, J=6.6 Hz, CH₃CH₂C $\underline{\text{H}}$ =); 13 C NMR (CDCl₃) δ =8.8 ($J_{\text{Sn-C}}$ =255.7 and 241.6 Hz), 10.1 (3C, $J_{\text{Sn-C}}$ =315.0 and 301.6 Hz), 13.7 (3C), 14.1, 19.9, 21.2, 27.4 (3C, $J_{\text{Sn-C}}$ =55.8 Hz), 29.1 (3C, $J_{\text{Sn-C}}$ =19.6 Hz), 55.7, 82.5, 123.4 ($J_{\text{Sn-C}}$ =39.1 Hz), and 139.3 ($J_{\text{Sn-C}}$ =45.0 Hz); 119 Sn NMR (CCl₄) δ =-16.95.
- (Z)-Tributyl-(2-pentenyl)tin ((Z)-2e): IR (neat) 2950, 2910, 2860, 2840, 1630, 1450, 1370, 1065, and 870 cm⁻¹; 1 H NMR (CDCl₃) δ =0.82 (6H, m, C $\underline{\text{H}}_{2}$ CH₂CH₂CH₃), 0.89 (9H, t, J=7.3 Hz, (CH₂)₃C $\underline{\text{H}}_{3}$), 0.96 (3H, t, J=7.3 Hz, C $\underline{\text{H}}_{3}$ CH₂CH=), 1.31 (6H, sext, J=7.1 Hz, CH₂CH₂C $\underline{\text{H}}_{2}$ CH₃), 1.49 (6H, m, CH₂C $\underline{\text{H}}_{2}$ CH₂CH₃), 1.71 (2H, d, J=8.5 Hz, $J_{\text{Sn-H}}$ =61.8 Hz, C $\underline{\text{H}}_{2}$ SnBu₃), 2.01 (2H, ddq, J=8.9, 1.7, and 7.1 Hz, CH₃C $\underline{\text{H}}_{2}$ CH=), 5.05 (dtt, J=10.7, 7.1, and 1.2 Hz, CH₃CH₂C $\underline{\text{H}}$ =), and 5.51 (1H, dtt, J=10.7, 9.0, and 1.7 Hz, =C $\underline{\text{H}}$ CH₂Sn); 13 C NMR (CDCl₃) δ =9.3 (3C, $J_{\text{Sn-C}}$ =313.0 and 299.3 Hz), 10.4 ($J_{\text{Sn-C}}$ =252.0 and 241.7 Hz), 13.7 (3C), 14.3, 20.2, 27.4 (3C, $J_{\text{Sn-C}}$ =52.8 Hz), 29.2 (3C, $J_{\text{Sn-C}}$ =19.6 Hz), 126.2 ($J_{\text{Sn-C}}$ =45.0 Hz), and 127.6 ($J_{\text{Sn-C}}$ =44.0 Hz); 119 Sn NMR (CCl₄) δ =-16.59.
- (*E*)-Tributyl-(2-pentenyl)tin ((*E*)-2e): IR (neat) 2960, 2925, 2875, 2850, 1635, 1460, 1375, 1070, 960, and 880 cm⁻¹; 1 H NMR (CDCl₃) δ =0.84 (6H, m, C $\underline{\text{H}}_{2}$ CH₂CH₂CH₂CH₃), 0.89 (9H, t, J=7.1 Hz, (CH₂)₃C $\underline{\text{H}}_{3}$), 0.94 (3H, t, J=7.3 Hz, C $\underline{\text{H}}_{3}$ CH₂CH=), 1.29 (6H, sext, J=7.1 Hz, CH₂CH₂CH₂CH₃), 1.48 (6H, m, CH₂C $\underline{\text{H}}_{2}$ CH₂CH₃), 1.68 (2H, dd, J=8.3 and 0.9 Hz, C $\underline{\text{H}}_{2}$ SnBu₃), 1.97 (2H, quint, J=7.6 Hz, CH₃C $\underline{\text{H}}_{2}$ CH=), 5.24 (1H, dt, J=15.1 and 6.4 Hz, CH₃CH₂C $\underline{\text{H}}_{2}$), and 5.51 (1H, dtt, J=15.1, 8.3, and 1.2 Hz, =C $\underline{\text{H}}$ CH₂Sn); 13 C NMR (CDCl₃) δ =9.2 (3C, J_{Sn-C}=314.0 and 300.3 Hz), 9.5 (J_{Sn-C}=330.4 and 313.6 Hz), 13.7 (3C), 14.1, 25.8, 27.4 (3C, J_{Sn-C}=50.9 Hz), 29.2 (3C, J_{Sn-C}=19.6 Hz), 127.6 (J_{Sn-C}=46.0 Hz), and 128.0 (J_{Sn-C}=44.0 Hz); 119 Sn NMR (CCl₄) δ =-19.73.
- (E)-Tributyl-(3-methyl-2-pentenyl)tin (2f): IR (neat) 2950, 2920, 2860, 2850, 1620, 1460, 1370, 1290, 1065, and 860 cm⁻¹; 1 H NMR (CDCl₃) δ =0.83 (6H, m, C $\underline{\text{H}}_{2}$ CH₂CH₂CH₃), 0.89 (9H, t, J=7.3 Hz, (CH₂)₃C $\underline{\text{H}}_{3}$), 0.96 (3H, t, J=7.3 Hz, C $\underline{\text{H}}_{3}$ CH₂C=), 1.29 (6H, sext, J=7.1 Hz, CH₂CH₂CH₂CH₃), 1.48 (6H, m, CH₂C $\underline{\text{H}}_{2}$ CH₂CH₃), 1.57 (3H, s, CCH₃=), 1.66 (2H, d, J=9.0 Hz, Jsn-H=60.3 Hz, C $\underline{\text{H}}_{2}$ SnBu₃), 1.97 (2H, q, J=7.6 Hz, CH₃C $\underline{\text{H}}_{2}$ C=), and 5.31 (1H, tq, J=8.8 and 1.5 Hz, =C $\underline{\text{H}}$ CH₂Sn); 13 C NMR (CDCl₃)

 $\delta{=}9.4$ (3C, $J_{\rm Sn-C}{=}309.1$ and 295.4 Hz), 10.7 ($J_{\rm Sn-C}{=}264.0$ and 252.0 Hz), 13.2 ($J_{\rm Sn-C}{=}15.7$ Hz), 13.7 (3C), 15.5, 27.4 (3C, $J_{\rm Sn-C}{=}52.8$ Hz), 29.3 (3C, $J_{\rm Sn-C}{=}19.6$ Hz), 32.5, 121.5 ($J_{\rm Sn-C}{=}46.0$ Hz), and 131.0 ($J_{\rm Sn-C}{=}47.5$ Hz); $^{119}{\rm Sn}$ NMR (CCl₄) $\delta{=}{-}19.73.$

References

- 1) M. Pereyre, J. -P. Quintard, and A. Rahm, "Tin in Organic Synthesis," Butterworth, London (1987).
- 2) E. Matarasso-Tchiroukhine and P. Cadiot, J. Organomet. Chem., 121, 155 (1976).
- 3) H. Yatagai, Y. Yamamoto, and K. Maruyama, J. Am. Chem. Soc., 102, 4548 (1980).
- 4) H. Miyake and K. Yamamura, Chem. Lett., 1992, 507.
- 5) Y. Tsuji and T. Kakehi, J. Chem. Soc., Chem. Commun., 1992, 1000.
- 6) For reviews: Y. Yamamoto, Acc. Chem. Res., 20, 243 (1987), and references sited therein. Also see: Y. Nishigaichi, A. Takuwa, Y. Naruta, and K. Maruyama, Tetrahedron, 49, 7395 (1993).
- 7) A. Takuwa, Y. Nishigaichi, T. Yamaoka, and K. Iihama, J. Chem. Soc., Chem. Commun., 1991, 1359.
- 8) A. Takuwa, J. Shiigi, and Y. Nishigaichi, *Tetrahedron Lett.*, **34**, 3457 (1993).
 - 9) J. A. Marshall and Y. Tang, Synlett, 1992, 653.
- 10) Y. Naruta, Y. Nishigaichi, and K. Maruyama, *J. Org. Chem.*, **56**, 2011 (1991).
- 11) K. Mori, M. Ohki, A. Sato, and M. Matsui, *Tetrahedron*, 28, 3739 (1972).
- 12) For a review: C. E. Miller, J. Chem. Educ., 42, 254 (1965).
- 13) A. J. Pratt and E. J. Thomas, *J. Chem. Soc.*, *Perkin Trans. 1*, **1989**, 1521.
- 14) 4-Methyl-2-pentenyltin 3 could be derived from 4-methyl-2,4-pentadienyltin which was given by 1,5-tin migration of 1a (Eq. 4). Y. Nishigaichi, A. Takuwa, K. Iihama, and N. Yoshida, *Chem. Lett.*, 1991, 693.

$$\operatorname{Me}^{\operatorname{SnBu_3}}$$
 $\operatorname{Me}^{\operatorname{SnBu_3}}$ $\operatorname{SnBu_3}$

- 15) N. J. Cusack, C. B. Reese, and B. Roozpeikar, *J. Chem. Soc., Chem. Commun.*, **1972**, 1132; N. J. Cusack, C. B. Reese, A. C. Resius, and B. Roozpeikar, *Tetrahedron*, **32**, 2157 (1976).
- 16) Y. Nishigaichi, M. Fujimoto, K. Nakayama, A. Takuwa, K. Hamada, and T. Fujiwara, *Chem. Lett.*, **1992**, 2339. See also Ref. 10.
- 17) Y. Nishigaichi, M. Fujimoto, and A. Takuwa, J. Chem. Soc., Perkin Trans. 1, 1992, 2581.
- 18) R. Yamaguchi, T. Hamasaki, T. Sasaki, T. Ohta, K. Utimoto, S. Kozima, and H. Takaya, J. Org. Chem., 58, 1136 (1993).
- 19) M. de los A. Paz-Sandoval and P. Powell, J. Organomet. Chem., 219, 81 (1981).
- 20) Y. Naruta, Y. Nishigaichi, and K. Maruyama, *Chem. Lett.*, **1986**, 1857.
- 21) H. Yasuda, M. Yamauchi, Y. Ohnuma, and A. Nakamura, Bull. Chem. Soc. Jpn., 54, 1481 (1981).